start previous pagenext page end   152
FOURTH DECADE  
For a.c. winders a great advance was the introduction of dynamic braking, which extended their range to powers of 3000 hp or so, much higher than was otherwise possible. Loads were usually lowered under the control of the mechanical brakes, and in order to relieve them expensive hydraulic brakes of the dynamometer type were being installed on high-power deep shaft winders. Dynamic braking provided an alternative method that was both reliable and easily controlled. When braking, the motor is isolated from the supply, and its stator connected to a d.c. exciter; by varying the d.c. excitation the braking characteristic can be made to follow the load requirements. The control of a.c. winders thus becomes as easy as that of WardLeonard equipments, and the M-V system, first used in 1937 on the service winder at the new Comrie colliery in Fife, was subsequently adopted by all manufacturers of a.c. winders, both in this country and America.

In 1937 the British mining regulations regarding landing speed for men were made more stringent, and the Company developed a compound braking system for use by the makers of the mechanical parts. The traditional British and American methods employed a single-power vertical braking engine, which could cause objectionable and sometimes dangerous shocks to the equipment and also to the men-in the cage; the use of damping devices involved a sacrifice of speed in the application of the brakes and depended too much on proper adjustment and maintenance. The M-V compound brake system applies a moderate braking force gently and rapidly (by means of tension springs under independent control) and retains the advantage of deadweights as the main source of braking power.

Some years earlier another M-V development had made it possible to employ synchronous motor generator sets on Ward-Leonard winder equipments. This was the use of an hydraulic slip coupling between motor and flywheel, controlled in such a way that the speed of the motor remained constant while that of the flywheel and generator fell on increased load, thus allowing the flywheel to give up its stored energy. In this way power factor correction was made available without recourse to the Scherbius system, a complicated matter of many machines and elaborate brushgear. The first installation was put in at the Roan Antelope copper mines in Northern Rhodesia in 1930, and most of the large equalized winders in Rhodesia and Australia are now equipped with hydraulic couplings.

At the same time a system of automatic winding control was being developed chiefly for use on skip winders in metalliferous mines overseas. For Ward-Leonard equipments it was a comparatively simple step from supervisory control by cams to semi-automatic or indeed fully automatic control, though the need for exact decking with varying skip loads presented some tricky problems. An automatic winding equipment, the first in the world, was installed in 1931 in a zinc and silver mine at South Broken Hill, Australia, and is still in satisfactory operation. It was followed by other sets in Australia and, in later years, at the copper mines of Northern Rhodesia and the gold mines of the Witwatersrand; the skip winding plant at Bickershaw colliery in Lancashire is similarly equipped. Automatic control was also developed for a.c. winders, and in 1935 an installation was put in at Lynemouth colliery, which is believed to possess the only completely automatic a.c. hoist.