start previous pagenext page end   139
FOURTH DECADE  
A 60-kW tetrode valve, another outcome of C. R. Burch's work, was in operation with the G.P.O. when the head of the radio department at the National Physical Laboratory, R. A. Watson Watt, was starting his experimental station at Orfbrd for work on radio direction-finding (r.d.f.), later known as 'radar'. One of his first difficulties was the production of stable high-frequency radiation at very high power, An experimental transmitter had been built in the Company's research department to find the minimum operational wavelength for the tetrodes, and Watson Watt was invited to see tests carried out on these valves, which were delivering to an aerial a power of more than 100 kW at 55 Mc/s.

As a result of his report the Air Ministry asked the Company in October 1936 to quote for a number of valves and also accepted an offer of assistance in the design of their transmitters. In the following March, M-V was initiated into the r.d.f. programme, and work started immediately under the technical supervision of J. M. Dodds on the design of the CH (chain home) transmitter. On June 11 there came a verbal instruction to proceed; in July a contract was placed for two transmitters, and in November it was increased to cover forty transmitters, the whole of those required for the early warning system for the air defence of Great Britain. Each transmitter was to incorporate the Company's continuously evacuated valves, which were the only ones that could give the high powers necessary at the wavelengths required. This was the first of many war contracts for all sorts of radar equipment.

Much of the research work of this period was rendered possible by the use of continuously evacuated high vacuum apparatus, which itself was due to one of the many discoveries made by C. R. Burch in the M-V research laboratories. In 1933 however, Burch left the Company, having accepted a Leverhulrne fellowship in optics at the Imperial College, and three years later he moved to Bristol University, where he is now a fellow of the H. H. Wills physics laboratory. In March 1944 he was elected an F.R.S. on account of his contributions to science especially in connection with the obtaining of high vacua.

MATERIALS RESEARCH
Important though less spectacular was the work carried out on properties of magnetic materials, and the subsequent investigations on machines and transformers. For example, methods were developed for measuring pole-face losses in rotating machines and stray losses in transformers and, under F. Brailsford, for the direct measurement of rotational and alternating hysteresis loss on small specimens. The preferred orientation of crystals, particularly in the newer cold-rolled silicon transformer steels, was determined magnetically.

Crack detection work resulted in the development of apparatus suitable for routine testing, and by 1934 the requests from other firms were leading to the manufacture of magnetic crack detection equipment on a small scale. A consulting and inspection service was organized for industrial use. Non-destructive methods were also developed for testing non-ferrous metals, for example a fluorescent method which can be applied to practically every material.